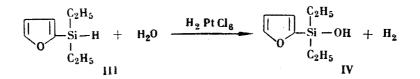
FURAN ORGANOSILICON COMPOUNDS

XII. Furylorganylhydrosilanes*

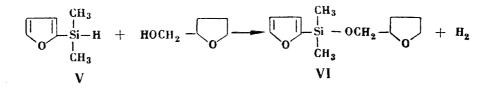
E. Ya. Lukevits and M. G. Voronkov

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 2, No. 3, pp. 328-331, 1966

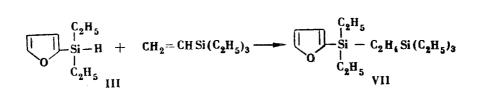
A series of 2-furyl- and 5-methyl-2-furylorganylhydrosilanes are synthesized by reacting 2-furyllithium and 5-methyl-2-furyllithium with organylchlorohydrosilanes. Furylorganylhydrosilanes reduce $HgCl_2$ in pyridine to free mercury; while in the presence of H_2PtCl_6 water converts them to the corresponding silanols, with alcohols they undergo dehydrocondensation, and with unsaturated compounds there is hydrosilanation.


We previously prepared [2] the first representative of the furylorganylhydrosilanes in 40% yield by reacting 2-furyllithium with methyldichlorosilane at -15° C in tetrahydrofuran.

The present work makes use of this method to synthesize dialkyl(2-furyl)- and dialkyl(5-methyl-2-furyl) hydrosilanes (in 40-50% yield), the equation being


$$R = H, CH_{3}; R' = CH_{3}, C_{2}H_{5}; R'' = CH_{3}, C_{2}H_{5}, p-C_{3}H_{7}$$

When 2-furyllithium reacts with trichlorosilane, the main reaction product is tetra (2-furyl) silane (I), and tri (2-furyl) silane (II) is formed in only insignificant yield. The yield of II could not be raised either by lowering the reaction temperature to -45° C, or by substituting another solvent, such as diethyl ether, for the tetrahydrofuran.


2-Furylorganylhydrosilanes readily undergo reaction involving the Si-H bond; this is predominantly exothermic and fast. Thus 2-furyl- and 5-methyl-2-furylorganylhydrosilanes in pyridine immediately reduce mercuric chloride to mercury metal. In the presence of H_2PtCl_6 they undergo vigorous reaction with water dissolved in dioxane, and this reaction made it possible to synthesize the first of the 2-furylorganylsilanes, diethyl (2-furyl) silanol:-

Dehydrocondensation of dimethyl(2-furyl) silane (V) with tetrahydrofurfuryl alcohol is rapidly catalyzed by H₂PtCl₆. The resultant dimethyl(2-furyl) tetrahydrofurfuryloxysilane (VI) is formed in 88.4% yield:-

Addition of III to triethylvinylsilane in the presence of H2PtCl6:-

^{*} For Part XI see [1].

Table 3

Furylorganylhydrosilanes and their Derivatives

,

$\mathbf{R}^{\prime} = 0^{\prime}$
$\mathbf{R}' = \mathbf{CH}_3 - \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{0};$
R =

	Bp, °C	. :	5	MR_D	² <i>D</i>		Si, %		blo:V
Compound	(mm)	R Q u	d ²⁰	Found	Calcu- lated	Formula	Found	Calcu- lated	η_{0}
R(CH ₃) ₂ SiH (V)	114.5115(770)	1.4390	0,8684	38.26	38.50	C ₆ H ₁₀ OSi	22,09; 22,16	22.25	40.4
R (CH ₃) C ₂ H ₅ SiH	139	1.4550	0.8902	42.75	43.01	C ₇ H ₁₂ OSi	19,83; 19,90	20.02	42.1
R (CH ₃) C ₃ H ₇ SiH	49 — 51 (10)	1.4460	0.8668	47,47	47.76	C ₈ H ₁₄ OSi	18,07; 18,11	18.20	52.5
$R(C_2H_6)_2SiH$ (III)	50 (10)	1.4528	0.8809	47,32	47.52	C ₈ H ₁₄ OSi	18.16; 18.25	18.20	55.1
R' (CH ₃) ₂ SiH	130 -131 (750)	1.4376	0.8607	42.74	43,13	$C_7H_{12}OSi$	19.80; 19.89	20.02	34.2
R' (C ₂ H ₅) ₂ SiH	68 — 69 (13)	1.4468	0.8645	52.00	52.15	C ₉ H ₁₆ OSi	16.72; 16.74	16.69	41.0
R'Si(CH ₃) ₃	142	1.4444	0.8635	47.50	47.50	C ₈ H ₁₄ OSi	18.14; 18.18	18.20	54.5
$R(C_2H_5)_2SiOH$ (IV)	88 (5)	1,4751	1.0147	47.26	47.80	C ₈ H ₁₄ O ₂ Si	16,09; 16.19	16,49	82.2
$R(CH_3)_2SiOCH_2R''$ (VI)	101 -102 (3)	1,4560	1,0036	61.31	61.79	C ₁₁ H ₁₈ O ₃ Si	12,18; 12,27	12.41	88.4
$R(C_2H_5)_2SiC_2H_4Si(C_2H_5)_3$ (VII)	135 —137 (4)	1,4760	0.8999	92.96	93,57	C ₁₆ H ₃₂ OSi ₂	18.70; 18.81	18.94	72.3
								4	
						-			

proceeds just as readily as does addition of methyldiethylsilane [3].

The table gives physical constants, yields, and analytical data for all the hitherto unknown furylorganylsilanes which have now been synthesized.

Experimental

<u>Diethyl (2-furyl) silan (III)</u>. A solution of 24.3 g (0.2 mole) diethylchlorosilane in 15 ml tetrahydrofuran was cooled to -15° C, stirred vigorously, and a 1.2 M solution of 2-furyllithium in furan added slowly to neutral reaction, the temperature being held at -15° to -20° C. The reaction mixture was then decomposed with water, the tetrahydrofuran layer separated off, and dried over MgSO₄. The solvent was distilled off, and the residue vacuum-distilled. Yield of III bp 50° C (10 mm), 17.0 g (55.1%). Other dialkyl(2-furyl)- and dialkyl(5-methyl-2-furyl) silanes were prepared similarly.

Preparation of tri-(2-furyl) silane (II). When 2-furyllithium and trichlorosilane were reacted together under various conditions, the residue left after distilling off the solvent crystallized.

To isolate II, the crystals of I were washed with cold hexane, in which I was only slightly soluble. The solution was evaporated and the oil which remained, in amount always too small for distillation, was sucked off from the crystals of tetra (2-furyl) silane (I) which separated. The oily material thus obtained reduced HgCl₂ in pyridine, and was hydrolyzed by alkali with the evolution of H₂. The IR absorption spectrum showed an intense band at 2181 cm⁻¹, corresponding to the value of ν (Si-H) calculated for II.

Diethyl (2-furyl) silanol (IV). 0.015 ml 0.1 M $P_2PtCl_6 \cdot 6H_2O$ in dry iso-PrOH was added to 4.63 g (0.03 mole) III, and then 0.54 g (0.03 mole) water in 10 ml dioxane added dropwise, when there was a vigorous evolution of H_2 , and the temperature of the reactants spontaneously rose to 65° C. When evolution of H_2 was complete, the dioxane was distilled under reduced pressure at a water pump. The residue was vacuum-distilled, yield, 4.20 g (82.2%) IV, bp 88° C (5 mm).

Dimethyl (2-furyl) tetrahydrofuryloxysilane (VI). 0.015 ml 0.1 M H_2PtCl_6 solution in iso-prOH and 4.1 g (0.04 mole) tetrahydrofuryl alcohol were added to 5 g (0.04 mole) V. At the end of the exothermic period, the reaction mixture was heated for 3 hr on a boiling water bath. Vacuum-distillation yielded 8.0 g (88.4%) VI, bp 101° - 102° C (3 mm).

(Triethylsilylethyl) diethyl(2-furyl)silane (VII). 6.2 g (0.04 mole) III, 5.7 g (0.04 mole) triethylvinylsilane and 0.015 ml 0.1 M solution $H_2PtCl_6 \cdot 6H_2O$ in iso-PrOH were heated for 4 hr at 140°-150° C. Vacuum-distillation yielded 8.6 g (72.3%) VII, bp 135°-137° C (4 mm).

REFERENCES

1. A. N. Egorochkin, E. Ya. Lukevits, and M. G. Voronkov, KhGS [Chemistry of Heterocyclic Compounds], p. 499, 1965.

2. E. Ya. Lukevits and M. G. Voronkov, KhGS [Chemistry of Heterocyclic Compounds], 31, 1965.

3. V. M. Vdovin and A. D. Petrov, ZhOKh, 30, 838, 1960.

3 April 1965

Institute of Organic Synthesis, AS LatvSSR, Riga